CDC Recommendations for Hepatitis C Testing Among Perinatally Exposed Infants and Children — United States, 2023

SUPPLEMENTARY TABLES

Supplementary Tables:

Supplementary Table 1: Chain of indirect evidence

Supplementary Table 2: Literature search strategy

Supplementary Table 3: National Institutes of Health (NIH) quality assessment tools

Supplementary Table 4: Supplementary literature search strategy

Supplementary Table 5: HCV prevalence in pregnancy

Supplementary Table 6: Perinatal HCV testing rates, transmission, and linkage to care Supplementary Table 7: Direct-acting antiviral treatment in children with perinatally acquired HCV infection

Supplementary Table 8: Quality assessment results

Supplementary Table 9: Potential harms of HCV testing among perinatally exposed children identified in evidence review

Supplementary Table 10: Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist for cost-effectiveness study

SUPPLEMENTARY TABLE 1. Chain of indirect evidence

Compared with HCV antibody testing at age 18 months, how would HCV RNA testing at age 2–6 months affect the number of children identified with perinatally acquired HCV infection?	How many additional children with perinatally acquired HCV infection would be identified?	How many additional children with perinatally acquired HCV infection would be linked to care?	Do desirable effects (benefits) of testing outweigh undesirable effects (harms)?	What is the effect of diagnosis at age 2-6 months with RNA testing on cirrhosis and deaths attributable to hepatitis C?
K.Q.1.a. What is the prevalence of HCV infection among pregnant people in the United States?	K.Q.2.a. What is the diagnostic accuracy of HCV antibody and HCV RNA testing in perinatally exposed children?	K.Q.3.a. What proportion of children with confirmed HCV infection are linked to care?	K.Q.4.a. What are the benefits of hepatitis C testing among perinatally exposed children?	K.Q.5.a. What is the effect of hepatitis C diagnosis in childhood on related morbidity and mortality (including cirrhosis, hepatocellular carcinoma, and death)?
K.Q.1.b. What proportion of pregnant people are tested for HCV infection in the United States?	K.Q.2.b. What proportion of children perinatally exposed to HCV are tested for HCV infection?		K.Q.4.b. What are the harms of hepatitis C testing among perinatally exposed children?*	K.Q.5.b. What is the effect of DAA treatment in childhood on hepatitis C-related morbidity (including cirrhosis, hepatocellular carcinoma)?
K.Q.1.c. What proportion of children perinatally exposed to HCV become infected?				K.Q.5.c. What is the effect of DAA treatment in childhood on hepatitis C-related mortality?

Abbreviations: DAA = direct acting antiviral; HCV = hepatitis C virus; KQ = key question; RNA = ribonucleic acid.

* Includes U.S. and non-U.S. studies.

SUPPLEMENTARY TABLE 2. Literature search strategy

Search Query: Among children perinatally exposed to HCV, does NAT for HCV RNA at age 2–									
6 months† com	pared with HCV antibody testing with reflex RNA te	esting (i.e., NAT	for HCV						
RNA following a	reactive anti-HCV test) at or after age ≥18 months	increase the id	lentification						
of HCV infections, increase linkage to care and treatment, and decrease cirrhosis and deaths									
attributable to HCV infection?									
Database	Strategy	Run date	Records						
Medline	(Hepatitis C OR HCV OR HepC) ADJ5 (test* OR	06/08/2021	1,790						
(OVID)	screen* OR assay* OR immunoassay* OR RNA								
1946–	OR antibod* OR serolog* OR polymerase chain								
	reaction OR PCR OR nucleic acid)								
	AND								
	Prenatal* OR mother-to-child OR MTCT OR								
	(vertical* ADJ2 transmi*) OR (vertical* ADJ2								
	infect*) OR (pregnan* ADJ2 infect*) OR in utero								
	OR perinatal OR antenatal OR neonatal OR								
	neonate* OR infant OR infants OR fetus OR fetal								
	OR foetus OR pediatric OR paediatric OR								
	maternal OR child*								
	Limit 2001–current								
Embase	(Hanatitic C OR HC) (OR HanC) ADJE (tast* OR	06/08/2021	2,992						
(OVID)	(Repairing C OK RCV OK RepC) ADJS (lest " OK		,						
1988–	Screen OR assay OR Infinunoassay OR RNA		- 1.091						
	OR antibou ⁺ OR serolog ⁺ OR polymerase chain		duplicates						
	reaction of PCR of nucleic acid)								
	AND		= 1.901						
	Prenatal* OR mother-to-child OR MTCT OR		unique						
	(vertical* ADJ2 transmi*) OR (vertical* ADJ2		items						
	infect*) OR (pregnan* ADJ2 infect*) OR in utero								
	OR perinatal OR antenatal OR neonatal OR								
	neonate* OR infant OR infants OR fetus OR fetal								
	OR foetus OR pediatric OR paediatric OR								
	maternal OR child*								

Cochrane			
	(("Hepatitis C" OR HCV OR HepC) NEAR/5 (test*	06/08/2021	199
Library	OR screen* OR assay* OR immunoassay* OR RNA OR antibod* OR serolog* OR "polymerase		- 59
	chain reaction" OR PCR OR "nucleic acid")):ti,ab		duplicates
	AND		= 140
	(Prenatal* OR mother-to-child OR MTCT OR (vertical* NEAR/2 transmi*) OR (vertical* NEAR/2 infect*) OR (pregnan* NEAR/2 infect*) OR "in utero" OR perinatal OR antenatal OR neonatal OR neonate* OR infant OR infants OR fetus OR fetal OR foetus OR pediatric OR paediatric OR maternal OR child*):ti,ab		unique items
	Limit 2001–current ;		
CINAHL (EbscoHost)	(("Hepatitis C" OR HCV OR HepC) N5 (test* OR screen* OR assay* OR immunoassay* OR RNA OR antibod* OR serolog* OR "polymerase chain reaction" OR PCR OR "nucleic acid"))	06/08/2021	189 – 66 duplicates
	AND		- 123
	(Prenatal* OR mother-to-child OR MTCT OR (vertical* N2 transmi*) OR (vertical* N2 infect*) OR (pregnan* N2 infect*) OR "in utero" OR perinatal OR antenatal OR neonatal OR neonate* OR infant OR infants OR fetus OR fetal OR foetus OR pediatric OR paediatric OR maternal OR child*)		unique items
Sconus	Limit 2001–current ; exclude Mediline records	06/08/2021	601
Scopus	TITLE-ABS-KEY(("Hepatitis C" OR HCV OR HepC) W/5 (test* OR screen* OR assay* OR immunoassay* OR RNA OR antibod* OR serolog* OR "polymerase chain reaction" OR PCR OR "nucleic acid")) AND TITLE-ABS- KEY(Prenatal* OR mother-to-child OR MTCT OR (vertical* W/2 transmi*) OR (vertical* W/2 infect*) OR (pregnan* W/2 infect*) OR "in utero" OR perinatal OR antenatal OR neonatal	00/08/2021	- 444 duplicates = 157 unique items

Note. Duplicates were identified using the Endnote automated "find duplicates" function with preference set to match on title, author, and year, and removed from Endnote library.

SUPPLEMENTARY TABLE 3. National Institutes of Health (NIH) quality assessment tools*

3a. NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies

1. Was the research question or objective in this paper clearly stated?

2. Was the study population clearly specified and defined?

3. Was the participation rate of eligible persons at least 50%?

4. Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?

5. Was a sample size justification, power description, or variance and effect estimates provided?6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?

7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?

8. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?

9. Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?

10. Was the exposure(s) assessed more than once over time?

11. Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?

12. Were the outcome assessors blinded to the exposure status of participants?

13. Was loss to follow-up after baseline 20% or less?

14. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?

3b. NIH Quality Assessment Tool for Case-Control Studies

1. Was the research question or objective in this paper clearly stated and appropriate?

2. Was the study population clearly specified and defined?

3. Did the authors include a sample size justification?

4. Were controls selected or recruited from the same or similar population that gave rise to the cases (including the same timeframe)?

5. Were the definitions, inclusion and exclusion criteria, algorithms or processes used to identify or select cases and controls valid, reliable, and implemented consistently across all study participants?

6. Were the cases clearly defined and differentiated from controls?

7. If less than 100 percent of eligible cases and/or controls were selected for the study, were the cases and/or controls randomly selected from those eligible?

8. Was there use of concurrent controls?

9. Were the investigators able to confirm that the exposure/risk occurred prior to the development of the condition or event that defined a participant as a case?

10. Were the measures of exposure/risk clearly defined, valid, reliable, and implemented consistently (including the same time period) across all study participants?

11. Were the assessors of exposure/risk blinded to the case or control status of participants?12. Were key potential confounding variables measured and adjusted statistically in the analyses? If matching was used, did the investigators account for matching during study analysis?

3c. NIH Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group

- 1. Was the study question or objective clearly stated?
- 2. Were eligibility/selection criteria for the study population prespecified and clearly described?
- 3. Were the participants in the study representative of those who would be eligible for the test/service/intervention in the general or clinical population of interest?
- 4. Were all eligible participants that met the prespecified entry criteria enrolled?
- 5. Was the sample size sufficiently large to provide confidence in the findings?
- 6. Was the test/service/intervention clearly described and delivered consistently across the study population?
- 7. Were the outcome measures prespecified, clearly defined, valid, reliable, and assessed consistently across all study participants?
- 8. Were the people assessing the outcomes blinded to the participants' exposures/interventions?
- 9. Was the loss to follow-up after baseline 20% or less? Were those lost to follow-up accounted for in the analysis?
- 10. Did the statistical methods examine changes in outcome measures from before to after the intervention? Were statistical tests done that provided p values for the pre-to-post changes?
- 11. Were outcome measures of interest taken multiple times before the intervention and multiple times after the intervention (i.e., did they use an interrupted time-series design)?
- 12. If the intervention was conducted at a group level (e.g., a whole hospital, a community, etc.) did the statistical analysis take into account the use of individual-level data to determine effects at the group level?

* **Source:** National Institutes of Health. Study quality assessment tools. Bethesda, MD: U.S. Department of Health and Human Services, National Institutes of Health. Accessed March 8, 2022. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

SUPPLEMENTARY TABLE 4. Supplementary literature search strategy

Search Query: A	mong children perinatally exposed to HCV, does N	IAT for HCV RN	A at age 2–						
6 months† com	pared with HCV antibody testing with reflex RNA te	esting (i.e., NAT	for HCV						
RNA following a	reactive anti-HCV test) at or after age ≥18 months	increase the ic	lentification						
of HCV infections, increase linkage to care and treatment, and decrease cirrhosis and deaths									
attributable to HCV infection?									
Database	Strategy	Records for	Records						
		run date	for run						
		6/8/21	date						
N 4 a allia a		1 700	1/1//23						
(O)(ID)	(Hepatitis C OR HCV OR Hepc) ADJ5 (test* OR	1,790	160						
(UVID) 1046	Screen OR assay OR Infinunoassay OR RNA								
1940-	reaction OR DCR OR nucleic acid)								
	reaction on ren on nucleic acidy								
	AND								
	Prenatal* OR mother-to-child OR MTCT OR								
	(vertical* ADJ2 transmi*) OR (vertical* ADJ2								
	infect*) OR (pregnan* ADJ2 infect*) OR in utero								
	OR perinatal OR antenatal OR neonatal OR								
	neonate* OR infant OR infants OR fetus OR fetal								
	OR foetus OR pediatric OR paediatric OR								
	Limit 2001–current								
Embase	(Hepatitis C OR HCV OR HepC) ADJ5 (test* OR	2,992	272						
(OVID)	screen* OR assay* OR immunoassay* OR RNA	1 001	22						
1988–	OR antibod* OR serolog* OR polymerase chain	- 1,091 duplicator	- 23 duplicator						
	reaction OR PCR OR nucleic acid)	duplicates	duplicates						
	AND	= 1,901	=249						
	Prenatal* OR mother-to-child OR MTCT OR	unique	unique						
	(vertical* ADJ2 transmi*) OR (vertical* ADJ2	items	items						
	infect*) OR (pregnan* ADJ2 infect*) OR in utero								
	OR perinatal OR antenatal OR neonatal OR								
	neonate* OR infant OR infants OR fetus OR fetal								
	OK IDELUS OK PEDIALTIC OK PAEDIALTIC OK								
	Limit 2001–current ; NOT Pubmed/Medline								

Database	Strategy	Records for run date 6/8/21	Records for run date 1/17/23
Cochrane Library	(("Hepatitis C" OR HCV OR HepC) NEAR/5 (test* OR screen* OR assay* OR immunoassay* OR RNA OR antibod* OR serolog* OR "polymerase chain reaction" OR PCR OR "nucleic acid")):ti,ab AND (Prenatal* OR mother-to-child OR MTCT OR (vertical* NEAR/2 transmi*) OR (vertical* NEAR/2 infect*) OR (pregnan* NEAR/2 infect*) OR "in utero" OR perinatal OR antenatal OR neonatal OR neonate* OR infant OR infants OR fetus OR fetal OR foetus OR pediatric OR paediatric OR maternal OR child*):ti,ab	199 – 59 duplicates = 140 unique items	28 -5 duplicates =23 unique items
CINAHL (EbscoHost)	(("Hepatitis C" OR HCV OR HepC) N5 (test* OR screen* OR assay* OR immunoassay* OR RNA OR antibod* OR serolog* OR "polymerase chain reaction" OR PCR OR "nucleic acid")) AND (Prenatal* OR mother-to-child OR MTCT OR (vertical* N2 transmi*) OR (vertical* N2 infect*) OR (pregnan* N2 infect*) OR "in utero" OR perinatal OR antenatal OR neonatal OR neonate* OR infant OR infants OR fetus OR fetal OR foetus OR pediatric OR paediatric OR maternal OR child*) Limit 2001–current ; exclude Medline records	189 - 66 duplicates = 123 unique items	16 -14 duplicates =2 unique items

Database	Strategy	Records for run date 6/8/21	Records for run date 1/17/23
Scopus	TITLE-ABS-KEY(("Hepatitis C" OR HCV OR HepC) W/5 (test* OR screen* OR assay* OR immunoassay* OR RNA OR antibod* OR serolog* OR "polymerase chain reaction" OR PCR OR "nucleic acid")) AND TITLE-ABS- KEY(Prenatal* OR mother-to-child OR MTCT OR (vertical* W/2 transmi*) OR (vertical* W/2 infect*) OR (pregnan* W/2 infect*) OR "in utero" OR perinatal OR antenatal OR neonatal OR neonate* OR infant OR infants OR fetus OR fetal OR foetus OR pediatric OR paediatric OR maternal OR child*) AND NOT INDEX(Medline)	601 - 444 duplicates = 157 unique items	92 -67 duplicates =25 unique items

Note. Duplicates were identified using the Endnote automated "find duplicates" function with preference set to match on title, author, and year, and removed from Endnote library.

SUPPLEMENTARY TABLE 5. HCV testing and prevalence in pregnancy

Author, year	Years of study	Study design	Description	Setting	Anti-HCV tested (n/N, %)	Anti-HCV positivity	RNA positivity
Bushman (22), 2021	2014–2018	Retrospective cohort	Comparison of rates of screening in pregnancy	Single urban tertiary care center in the U.S. South (Alabama)	7,033/16,489 (42.7%)	166/16,489 (1.0%)	103/154 (66.9%)
Epstein <i>(23),</i> 2021	2014-2018	Retrospective cohort	Review of pregnant people identified as HCV antibody positive	Safety net hospital in urban city (Boston Medical Center)			255/343 (74.3%)
Kaufman <i>(24),</i> 2022	2011-2021	Retrospective cohort	Review of laboratory data from Quest Diagnostics	United States	1,176,284/5,048,428 (23.3%)		
Kushner <i>(25),</i> 2020	2018–2019	Prospective seroprevalence	Screening among labor and delivery admissions using stored serum tested for syphilis	2 inner city hospitals in New York City, New York (Mount Sinai Health System)		56/7429 (0.8%)	

Author, year Lopata (26), 2020	Years of study 2005–2014	Study design Retrospective cohort	Description Vital statistics- linked administrative data following infants for 2 years	Setting TennCare (TN) Medicaid population	Anti-HCV tested (n/N, %)	Anti-HCV positivity 4,072/384,837 (1.1%)*	RNA positivity
Mast <i>(27),</i> 2005	1993–1996 (Texas), 1994–1998 (Hawaii)	Prospective cohort	Maternal serum at enrollment, delivery, infant serum at birth, and 8 well visits - infants followed until age 5	Houston, Texas and Honolulu, Hawaii		567/75,909 (0.8%)	194/242 (80.2%)
Pfeiffer <i>(28),</i> 2022	2015-2020	Retrospective cohort	Review of electronic medical record data among pregnant persons with opioid use disorder	8 delivery hospitals in Maine	582/916 (63.5%)	226/582 (38.8%)	136/210 (64.8%)

	Years of				Anti-HCV tested	Anti-HCV	
Author, year	study	Study design	Description	Setting	(n/N, %)	positivity	RNA positivity
Prasad <i>(29),</i> 2020	2012–2015	Observational	HCV screening among women presenting for prenatal care	Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network (32 hospitals, 14 states)		254/106,842 (0.2%)	88/129 (68.2%)
Rossi <i>(30)</i> , 2020	2009–2017	Population- based, retrospective cohort	Review of live births using National Center for Health Statistics birth records	United States		94,824/31,207,898 (0.3%) [†]	
Smith <i>(31),</i> 2022	2009-2019	Retrospective cohort	Review of mothers living with HIV and their infants for congenital infections	Tertiary care referral center (Children's Hospital Colorado)	251/255 (98.4%)	16/251 (6.4%)	13/16 (81.3%)

Author year	Years of	Study design	Description	Setting	Anti-HCV tested	Anti-HCV	RNA positivity
Watts <i>(32)</i> , 2017	2011–2015	Retrospective cohort	Estimate the proportion of women enrolled in Wisconsin Medicaid with HCV infection during pregnancy	Wisconsin Electronic Disease Surveillance System linked to Medicaid data		608/146,267 (0.4%)	180/608 (29.6%)
Watts (33), 2020	2011–2015	Cross-sectional analysis	Pregnant persons with Wisconsin Medicaid coverage	Wisconsin birth certificates and Medicaid enrollment	4,401/78,917 (5.6%) [§]	177/4,490 (3.9%) [§]	

Abbreviations: Anti-HCV = hepatitis C virus antibody; HCV = hepatitis C virus; RNA = ribonucleic acid.

* Diagnosis of HCV based on birth certificates and International Classification of Diseases (ICD) codes from hospitalization.

Diagnosis of HCV based on birth certificates.

HCV testing rates based on Current Procedural Terminology (CPT) and Healthcare Common Procedure Coding System (HCPCS) codes during prenatal period; diagnosis of HCV based on International Classification of Diseases (ICD) codes.

Author, year Abughali (34), 2014	Years of study 1993– 2011	Study design Pre- and post- intervention comparison	Description Retrospective medical record review (1993–2005) and prospective follow-up (2006–2011)	Setting Pediatric infectious disease service at an inner- city U.S. hospital	Proportion of exposed infants referred for HCV testing (n/N%)	Proportion of exposed infants with HCV testing (n/N%) 46/193 (23.8%)	Rate of perinatal transmission (n/N%) 5/75 (6.6%)	Definition of perinatal transmission Positive anti- HCV at age ≥18 months	Proportion of infants with hepatitis C linked to care (n/N%)
Bal <i>(35),</i> 2016	1998– 2013	Retrospective cohort	Retrospective review of demographic and clinical data of positive HCV mothers and their infants	Pediatric infectious diseases clinic at Jersey Shore University Medical Center			5/142 (3.5%)	At least 2 positive HCV RNA tests and positive anti-HCV at age ≥18 months	

SUPPLEMENTARY TABLE 6. Rates of perinatal HCV testing, transmission, and linkage to care

Author, vear	Years of study	Study design	Description	Setting	Proportion of exposed infants referred for HCV testing (n/N%)	Proportion of exposed infants with HCV testing (n/N%)	Rate of perinatal transmission (n/N%)	Definition of perinatal transmission	Proportion of infants with hepatitis C linked to care (n/N%)
Bell <i>(36),</i> 2019	2013– 2018	Retrospective cohort	Review of electronic medical records and	Tertiary care center in southern Maine		94/177 (53.1%)	7/94 (7.4%)	Positive anti- HCV if aged ≥18 months or positive	
			statewide database of laboratory results					HCV RNA if aged ≥2 months followed by repeat HCV RNA at age	
Berkley <i>(37),</i> 2008	2000– 2006	Retrospective medical record review	Medical record review of testing and outcomes of pregnant persons with and without HCV	Large drug dependence program at University of New Mexico Hospital	3/159 (1.9%)			≥12 months	

Author,	Years of	Study design	Description	Satting	Proportion of exposed infants referred for HCV testing (n/N%)	Proportion of exposed infants with HCV testing (n/N%)	Rate of perinatal transmission (n/N%)	Definition of perinatal transmission	Proportion of infants with hepatitis C linked to care (n/N%)
year Bhardwaj <i>(38),</i> 2021	1993– 2016	Retrospective cohort	Medical record review of drug treatment program, testing, and outcomes of pregnant persons with and without HCV	Safety-net hospital; high-risk, urban, inner-city population	(11/ 11 76)	(17,17%) 108/407 (26.5%)	12/108 (11.1%)	Positive anti- HCV at age ≥18 months or 2 positive HCV RNA tests if aged ≥2 months	(11/ N 76)
Chappell <i>(39),</i> 2018	2006– 2014	Population- based, retrospective cohort	Retrospective chart review	Large, tertiary care maternity hospital (University of Pittsburgh)		73/323 (22.6%)	7/83 (8.4%)		

Author,	Years of	Study docign	Description	Sotting	Proportion of exposed infants referred for HCV testing (p (N%)	Proportion of exposed infants with HCV testing (p (N%)	Rate of perinatal transmission	Definition of perinatal	Proportion of infants with hepatitis C linked to care (n/N%)
Fostein	2006-	Retrospective	Review of	Boston	(11/18/0)	180/404	5/180 (2.8%)	Two positive	5/5 (100%)
(40), 2018	2015	cohort	electronic medical records	Medical Center obstetric clinic for women with substance use disorders		(44.6%)		HCV RNA at least 1 month apart or positive anti-HCV at age ≥18 months	
Gowda <i>(41),</i> 2020	2008– 2018	Retrospective cohort	Retrospective review of electronic health record data and laboratory data	Nationwide Children's Hospital, Columbus, Ohio			27/770 (3.5%)	Initial HCV RNA positive at age 2–6 months followed by a second positive RNA or anti-HCV at age ≥24 months	

Author, year	Years of study	Study design	Description	Setting	Proportion of exposed infants referred for HCV testing (n/N%)	Proportion of exposed infants with HCV testing (n/N%)	Rate of perinatal transmission (n/N%)	Definition of perinatal transmission	Proportion of infants with hepatitis C linked to care (n/N%)
Hojat <i>(42),</i>	2011–	Retrospective	Control	Urban		97/219	1/97 (1.0%)	Positive anti-	
2020	2018	medical	phase: review	safety-net		(44.3%)		HCV at age	
		review,	of records;	hospital				≥18 months	
		prospective	Intervention	system					
		electronic	phase:						
		health	automatic						
		records	alerts						
		intervention	indicating						
			need for						
			antibody test						
			in children						
			ageu ≥10 months						
Kuncio	2011–	Retrospective	Matched HCV	Philadelphia		84/537	4/84 (4 8%)	Positive anti-	
(43). 2016	2015	cohort	lab data and	Department		(15.6%)	1/01 (1.0/0)	HCV at age	
(,) ====			birth	of Health		(≥18 months	
			certificate					or HCV RNA	
			data to					at age ≥12	
			identify					months	
			mothers and						
			screened						
			children						

Author, year	Years of study	Study design	Description	Setting	Proportion of exposed infants referred for HCV testing (n/N%)	Proportion of exposed infants with HCV testing (n/N%)	Rate of perinatal transmission (n/N%)	Definition of perinatal transmission	Proportion of infants with hepatitis C linked to care (n/N%)
Lazenby	2007–	Retrospective	Retrospective	Academic	11/35	3/35			
(44), 2019	2016	cohort	chart review	obstetrical	(31.4%)	(8.6%)			
				clinic, Medical University of South Carolina					
Lopata	2005-	Retrospective	Vital	TennCare		733/4072			
(26), 2020	2014	cohort	statistics- linked administrative data following infants for 2 years	(Tennessee) Medicaid population		(18.0%)			
Mast (27),	1993–	Prospective	Maternal-	Houston,			9/190 (4.7%)	HCV RNA	
2005	1996	cohort	infant pairs	Texas and				positive at 2	
	(Texas),		enrolled	Honolulu,				follow-up	
	1994-		during	Hawaii				visits or anti-	
	1998		pregnancy;					HCV at	
	(Hawaii)		followed ustil					age≥24	
			age 5					months	

Author, year	Years of study	Study design	Description	Setting	Proportion of exposed infants referred for HCV testing (n/N%)	Proportion of exposed infants with HCV testing (n/N%)	Rate of perinatal transmission (n/N%)	Definition of perinatal transmission	Proportion of infants with hepatitis C linked to care (n/N%)
Smith (31), 2022	2009- 2019	Retrospective cohort	Review of mothers living with HIV and their infants for congenital infections	Tertiary care referral center (Children's Hospital Colorado)		14/18 (77.8%)	0/14 (0%)	HCV RNA positive at age ≤6 months or anti-HCV positive at age ≥12 months	
Towers (45), 2019	2015– 2016	Prospective database	Review of perinatal HCV exposures and follow-up testing	Tennessee; UT Medical Center in Knoxville		55/127 (43.3%)	4/55 (7.3%)	Anti-HCV positive at age ≥18 months	

Author,	Years of				Proportion of exposed infants referred for HCV testing	Proportion of exposed infants with HCV testing	Rate of perinatal transmission	Definition of perinatal	Proportion of infants with hepatitis C linked to care
year	study	Study design	Description	Setting	(n/N%)	(n/N%)	(n/N%)	transmission	(n/N%)
Watts(32),	2011–	Retrospective	Estimate of	Wisconsin		31/92	7/183 (3.8%)	Anti-HCV at	
2017	2015	cohort	the	Electronic		(33.7%)		age ≥18	
			proportion of	Disease				months or 2	
			women	Surveillance				or more	
			enrolled in	System				positive HCV	
			Wisconsin	linked to				RNA at age	
			Medicaid with	Medicaid				≥2 months	
			HCV infection	data					
			during						
			pregnancy						
			and estimate						
			of frequency						
			of HCV testing						
			and infection						
			in infants						
			born to HCV-						
			infected						
			women						

Abbreviations: Anti-HCV = hepatitis C virus antibody; HCV = hepatitis C virus; RNA = ribonucleic acid.

Author, year	Drugs	Duration of treatment (weeks)	Age group (years)	% perinatally infected*	SVR12 n/N (% [95% Cl])	Serious adverse events related to treatment
Jonas <i>(46),</i> 2020	Glecaprevir/Pibrentasvir	8-16	12-17	85%	47/47 (100% [92.4%-100%])	None
Jonas <i>(47),</i> 2021	Glecaprevir/Pibrentasvir	8-16	3-11	Not reported	77/80 (96% [90%- 99%])	None
Schwarz <i>(48),</i> 2020	Ledipasvir/ sofosbuvir	12	3–5	100%	33/34 (97% [85%– 100%])	None
Rosenthal <i>(49),</i> 2020	Sofosbuvir/ribavirin	12–24	3–11	94%	53/54 (98% [90%– 100%])	1 ribavirin overdose [†]
Murray <i>(50),</i> 2018	Ledipasvir/sofosbuvir +/- ribavirin	12–24	6–11	97%	91/92 (99% [94%– 100%])	None
Balistreri <i>(51),</i> 2017	Ledipasvir/ sofosbuvir	12	12–17	84%	98/100 (98% [93%– 100%])	None
Wirth <i>(52),</i> 2017	Sofosbuvir/ribavirin	12–24	12–17	73%	51/52 (98% [90%– 100%])	None

SUPPLEMENTARY TABLE 7. Direct-acting antiviral treatment in children with perinatally acquired hepatitis C virus infection

Abbreviations: SVR12 = sustained virologic response 12 weeks posttreatment (reported among all study participants).

* Non-perinatal modes of transmission included blood product transfusion, contaminated needle or intravenous drug use, contact with infected individual, surgery/operation, and unknown.

[†] Ribavirin overdose required hospitalization for monitoring; patient completed therapy and achieved SVR12. Page **23** of **35**

SUPPLEMENTARY TABLE 8. Quality assessment results*

Author, year	Type of Assessment	Overall rating
	Before-after (pre-post) studies	
Abughali <i>(34),</i> 2014	with no control group	Fair
	Observational cohort and cross-	
Bal <i>(35),</i> 2016	sectional study	Good
	Before-after (pre-post) studies	
Balistreri <i>(51),</i> 2017	with no control group	Good
	Observational cohort and cross-	
Bell <i>(36),</i> 2019	sectional study	Fair
	Observational cohort and cross-	
Berkley <i>(37)</i> , 2008	sectional study	Fair
	Observational cohort and cross-	
Bhardwaj <i>(38),</i> 2021	sectional study	Fair
	Observational cohort and cross-	
Bushman <i>(22)</i> , 2021	sectional study	Fair
	Observational cohort and cross-	
Chappell <i>(39)</i> , 2018	sectional study	Fair
	Observational cohort and cross-	
Epstein <i>(40)</i> , 2018	sectional study	Good
	Before-after (pre-post) studies	
Epstein <i>(23),</i> 2022	with no control group	Good
	Before-after (pre-post) studies	
Hojat <i>(42),</i> 2020	with no control group	Fair
	Observational cohort and cross-	
Gowda <i>(41)</i> , 2020	sectional study	Good
	Before-after (pre-post) studies	
Jonas (46), 2020	with no control group	Fair
	Before-after (pre-post) studies	
Jonas (47), 2021	with no control group	Fair
	Observational cohort and cross-	
Kaufman <i>(24),</i> 2022	sectional study	Good
	Observational cohort and cross-	
Kuncio <i>(43),</i> 2016	sectional study	Good
	Observational cohort and cross-	
Kushner <i>(25)</i> , 2020	sectional study	Good
	Observational cohort and cross-	
Lazenby <i>(44),</i> 2019	sectional study	Fair
	Observational cohort and cross-	
Lopata <i>(26),</i> 2020	sectional study	Good
	Observational cohort and cross-	
Mast (27), 2005	sectional study	Fair
	Betore-after (pre-post) studies	
Murray (50), 2018	with no control group	Fair
	Observational cohort and cross-	
Pteiffer (28), 2022	sectional study	Good

Author, year	Type of Assessment	Overall rating
Prasad <i>(29),</i> 2020	Case-control study	Good
	Before-after (pre-post) studies	
Rosenthal (49), 2019	with no control group	Fair
	Observational cohort or cross-	
Rossi <i>(30)</i> , 2020	sectional study	Good
	Before-after (pre-post) studies	
Schwarz <i>(48),</i> 2020	with no control group	Fair
	Observational cohort and cross-	
Smith <i>(31),</i> 2022	sectional study	Fair
	Observational cohort and cross-	
Towers (45), 2019	sectional study	Fair
	Observational cohort and cross-	
Watts (32), 2017	sectional study	Fair
	Observational cohort and cross-	
Watts (33), 2020	sectional study	Good
	Before-after (pre-post) studies	
Wirth <i>(52),</i> 2017	with no control group	Fair

* Full texts were independently reviewed and scored by two reviewers. All differences in responses were discussed, and agreement was reached on the final rating.

SUPPLEMENTARY TABLE 9. Potential harms of HCV testing among perinatally exposed children identified in evidence review*

			Outcome
Author, year	Potential harm	Level of confidence †	prioritization [§]
Ades (53), 2022	Transient viremia [¶]	High	Not important
Bal (35), 2016	Transient viremia	High	Not important
Bhardwaj <i>(38),</i> 2021	Transient viremia	High	Not important
Biggar <i>(54)</i> , 2006	False-positive antibody	Low	Not important
Ceci (55), 2001	Transient viremia	High	Not important
Ceci (56), 2001	Transient viremia	High	Not important
Checa Cabot (57), 2013	Transient viremia	Low	Not important
Di Domenico (58), 2006	False-negative		
	antibody	Moderate	Not important
England <i>(59)</i> , 2005	Transient viremia	Moderate	Not important
Ferrero <i>(60)</i> , 2003	Cost	High	Important
Fukuoka <i>(61),</i> 2022	Stress and concern about child's health, school, employment,	High	Important
	Cuilt	High	Important
Candor (62) 2021	Guilt	півіі	Important
Ganuer (62), 2021	(to 19 months)	Low	Notimportant
	(to to months)	LOW	Important
Crainar (62) 2017	Cost	LUW	Important
Greiner (63), 2017	COSt Dolay in clarifying	підії	Important
nealy (<i>64)</i> , 2001	infection status, uncertain prognosis	Low	Important
Hojat <i>(42),</i> 2020	Time to go to lab and wait	Low	Important
	Pressure on clinic staff to order and explain testing	Low	Important
Jhaveri <i>(65)</i> , 2015	Transient viremia	Low	Not important
Kushner <i>(66),</i> 2022	Rare misclassification	Low	Netimeertent
Lanata (26) 2020		LOW	Not important
Lupala (20), 2020		LOW	Not important
	testing and transportation, especially in rural areas	Low	Important
Marjani <i>(67)</i> , 2022	Parental refusal	High	Not important
Mast <i>(27),</i> 2005	False-negative antibody	Low	Not important

			Outcome
Author, year	Potential harm	Level of confidence †	prioritization [§]
Meskina (68), 2022	Absence of approved		
	treatment	Low	Not important
	Stigma	Low	Important
Mok <i>(69),</i> 2005	Transient viremia	Low	Not important
	Cost	High	Important
Mostafa (70), 2020	Cost	Low	Important
Peixoto (71), 2004	Transient viremia	High	Not important
Pinto (72), 2021	Involvement of social		
	services to follow some		
	children	High	Important
	Stigma	Low	Important
Polywka <i>(73),</i> 2006	Transient viremia	Moderate	Not important
Reid (74), 2018	Stigma	Low	Important
Shebl (75), 2009	Transient viremia	High	Not important
Stinco (76), 2022	Transient viremia	High	Not important
Ziyaeyan (77), 2013	Distance to follow up		
	for families living far		
	away	Moderate	Important

*All assessments were performed individually by two reviewers.

[†]Level of confidence refers to confidence that the harm was directly measured in the study and was rated as low, moderate, or high.

[§] Outcome prioritization determines value of harm to testing recommendations and was rated as critical, important, or not important.

¶ Definition of transient viremia: any mention of transient viremia, intermittent viremia, or spontaneous clearance.

Supplementary Table 10: Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist *(78)* for cost-effectiveness study *(79)*

	Item		Reported on	
Section/topic	NO	Guidance for reporting	page number	Comments
Title	T	F		l .
		Identify the study as an economic		
		evaluation and specify the		
Title	1	interventions being compared.	1	
Abstract	1			
		Provide a structured summary that		
		highlights context, key methods,		
Abstract	2	results, and alternative analyses.	1	
Introduction				
		Give the context for the study, the		
		study question, and its practical		
Background		relevance for decision making in policy		
and objectives	3	or practice.	1, 2	
Methods				
Health		Indicate whether a health economic		
economic		analysis plan was developed and		
analysis plan	4	where available.		Not reported
		Describe characteristics of the study		
		population (such as age range,		
Study		demographics, socioeconomic, or		
population	5	clinical characteristics).	1, 2	
		Provide relevant contextual		
Setting and		information that may influence		
location	6	findings.	2	
		Describe the interventions or		
		strategies being compared and why		
Comparators	7	chosen.	2-4	
		State the perspective(s) adopted by		
Perspective	8	the study and why chosen.	3	-
		Chata the times having for the study		
Time herizon	0	state the time norizon for the study	2.4	
	9	and why appropriate.	۲-4	Discounting rate 2%
		Penart the discount rate(s) and reason		reason chosen not
Discount rate	10	chosen	л	reported
	10	Describe what outcomes were used as	4	
Selection of		the measure(s) of henefit(s) and		
outcomes	11	harm(s)	2_1	
outcomes	1 11	10111(3)	Z-4	

Section/topic	ltem No	Guidance for reporting	Reported on page number	Comments		
		Describe how outcomes used to				
Measurement	10	capture benefit(s) and harm(s) were				
of outcomes	12	measured.	2-4			
Validation of		Describe the population and methods				
outcomes	13	used to measure and value outcomes	2-4			
Measurement						
and valuation						
of resources	1/	Describe how costs were valued	2-4			
	14	Benort the dates of the estimated	2-4			
Currency, price		resource quantities and unit costs,				
date, and		plus the currency and year of				
conversion	15	conversion	2-4, Table 2			
		If modelling is used, describe in detail				
Rationale and		and why used. Report if the model is				
description of		publicly available and where it can be				
model	16	accessed.	2, figure 1,2			
		Describe any methods for analyzing or				
		extrapolation methods and				
Analytics and		approaches for validating any model				
assumptions	17	used.	2-4			
		Describe any methods used for				
Characterizing		estimating how the results of the				
heterogeneity	18	study vary for subgroups.		N/A		
		Describe how impacts are distributed				
Characterizing		across different individuals or				
distributional		adjustments made to reflect priority		_		
effects	19	populations.		N/A		
Characterizing	20	Describe methods to characterize any	4 5			
	20	sources of uncertainty in the analysis.	4, 5			
engagement		Describe any approaches to engage				
with patients		patients or service recipients, the				
and others		general public, communities, or				
affected by the		stakeholders (such as clinicians or				
study	21	payers) in the design of the study		N/A		
Results						
		Report all analytic inputs (such as				
		values, ranges, references) including	4, 5, table 1 &			
Study		uncertainty or distributional	table 2			
parameters	22	assumptions.	(footnote)			

	Item		Reported on				
Section/topic	No	Guidance for reporting	page number	Comments			
		Report the mean values for the main					
		categories of costs and outcomes of					
Summary of		interest and summarize them in the					
main results	23	most appropriate overall measure.	4, 5				
		Describe how uncertainty about					
		analytic judgments, inputs, or					
		projections affect findings. Report the					
Effect of		effect of choice of discount rate and					
uncertainty	24	time horizon, if applicable.	4-7				
Effect of							
engagement		Report on any difference					
with patients		patient/service recipient, general					
and others		public, community, or stakeholder					
affected by the		involvement made to the approach or					
study	25	findings of the study		N/A			
Discussion							
Study findings,							
limitations,		Report key findings, limitations, ethical					
generalizability,		or equity considerations not captured,					
and current		and how these could affect patients,					
knowledge	26	policy, or practice.	5-7				
Other							
		Describe how the study was funded					
		and any role of the funder in the					
Source of		identification, design, conduct, and					
funding	27	reporting of the analysis	1				
		Report authors conflicts of interest					
		according to journal or International					
Conflicts of		Committee of Medical Journal Editors					
interest	28	requirements.	1				

References

1. Jabeen T, Cannon B, Hogan J, Crowley M, Devereux C, Fanning L, et al. Pregnancy and pregnancy outcome in hepatitis C type 1b. QJM. 2000 Sep;93(9):597-601.

2. Pergam SA, Wang CC, Gardella CM, Sandison TG, Phipps WT, Hawes SE. Pregnancy complications associated with hepatitis C: data from a 2003-2005 Washington state birth cohort. Am J Obstet Gynecol. 2008 Jul;199(1):38 e1-9.

3. Floreani A, Paternoster D, Zappala F, Cusinato R, Bombi G, Grella P, et al. Hepatitis C virus infection in pregnancy. Br J Obstet Gynaecol. 1996 Apr;103(4):325-9.

4. Connell LE, Salihu HM, Salemi JL, August EM, Weldeselasse H, Mbah AK. Maternal hepatitis B and hepatitis C carrier status and perinatal outcomes. Liver Int. 2011 Sep;31(8):1163-70.

5. Huang QT, Hang LL, Zhong M, Gao YF, Luo ML, Yu YH. Maternal HCV infection is associated with intrauterine fetal growth disturbance: A meta-analysis of observational studies. Medicine (Baltimore). 2016 Aug;95(35):e4777.

6. Reddick KL, Jhaveri R, Gandhi M, James AH, Swamy GK. Pregnancy outcomes associated with viral hepatitis. J Viral Hepat. 2011 Jul;18(7):e394-8.

7. Medhat A, el-Sharkawy MM, Shaaban MM, Makhlouf MM, Ghaneima SE. Acute viral hepatitis in pregnancy. Int J Gynaecol Obstet. 1993 Jan;40(1):25-31.

8. Wijarnpreecha K, Thongprayoon C, Sanguankeo A, Upala S, Ungprasert P, Cheungpasitporn W. Hepatitis C infection and intrahepatic cholestasis of pregnancy: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol. 2017 Feb;41(1):39-45.

9. Salemi JL, Whiteman VE, August EM, Chandler K, Mbah AK, Salihu HM. Maternal hepatitis B and hepatitis C infection and neonatal neurological outcomes. J Viral Hepat. 2014 Nov;21(11):e144-53.

10. Ceci O, Margiotta M, Marello F, Francavilla R, Loizzi P, Francavilla A, et al. Vertical transmission of hepatitis C virus in a cohort of 2,447 HIV-seronegative pregnant women: a 24-month prospective study. J Pediatr Gastroenterol Nutr. 2001 Nov;33(5):570-5.

11. Yeung LT, To T, King SM, Roberts EA. Spontaneous clearance of childhood hepatitis C virus infection. J Viral Hepat. 2007 Nov;14(11):797-805.

12. Garazzino S, Calitri C, Versace A, Alfarano A, Scolfaro C, Bertaina C, et al. Natural history of vertically acquired HCV infection and associated autoimmune phenomena. Eur J Pediatr. 2014 Aug;173(8):1025-31.

13. Shebl FM, El-Kamary SS, Saleh DA, Abdel-Hamid M, Mikhail N, Allam A, et al. Prospective cohort study of mother-to-infant infection and clearance of hepatitis C in rural Egyptian villages. J Med Virol. 2009 Jun;81(6):1024-31.

14. Mast EE, Hwang LY, Seto DS, Nolte FS, Nainan OV, Wurtzel H, et al. Risk factors for perinatal transmission of hepatitis C virus (HCV) and the natural history of HCV infection acquired in infancy. J Infect Dis. 2005 Dec 1;192(11):1880-9.

15. European Paediatric Hepatitis CVN. Three broad modalities in the natural history of vertically acquired hepatitis C virus infection. Clin Infect Dis. 2005 Jul 1;41(1):45-51.

16. Ades AE, Gordon F, Scott K, Collins IJ, Thorne C, Pembrey L, et al. Spontaneous Clearance Of Vertically Acquired Hepatitis C Infection: Implications For Testing And Treatment. Clin Infect Dis. 2022 Apr 9.

17. Tovo PA, Pembrey LJ, Newell ML. Persistence rate and progression of vertically acquired hepatitis C infection. European Paediatric Hepatitis C Virus Infection. J Infect Dis. 2000 Feb;181(2):419-24.

18. Jara P, Resti M, Hierro L, Giacchino R, Barbera C, Zancan L, et al. Chronic hepatitis C virus infection in childhood: clinical patterns and evolution in 224 white children. Clin Infect Dis. 2003 Feb 1;36(3):275-80.

19. Mohan P, Barton BA, Narkewicz MR, Molleston JP, Gonzalez-Peralta RP, Rosenthal P, et al. Evaluating progression of liver disease from repeat liver biopsies in children with chronic hepatitis C: a retrospective study. Hepatology. 2013 Nov;58(5):1580-6.

20. Goodman ZD, Makhlouf HR, Liu L, Balistreri W, Gonzalez-Peralta RP, Haber B, et al. Pathology of chronic hepatitis C in children: liver biopsy findings in the Peds-C Trial. Hepatology. 2008 Mar;47(3):836-43.

21. Mohan P, Colvin C, Glymph C, Chandra RR, Kleiner DE, Patel KM, et al. Clinical spectrum and histopathologic features of chronic hepatitis C infection in children. J Pediatr. 2007 Feb;150(2):168-74, 74 e1.

22. Bushman ET, Subramani L, Sanjanwala A, Dionne-Odom J, Franco R, Owen J, et al. Pragmatic Experience with Risk-based versus Universal Hepatitis C Screening in Pregnancy: Detection of Infection and Postpartum Linkage to Care. Am J Perinatol. 2021 May 02;02:02.

23. Epstein RL, Moloney C, Garfinkel J, Saia K, Wachman EM, Lodi S, et al. Enhancing Linkage to Hepatitis C Virus Treatment Following Pregnancy in Women Identified During Perinatal Care. Hepatol. 2021 Sep;5(9):1543-54.

24. Kaufman HW, Osinubi A, Meyer WA, 3rd, Khan M, Huang X, Panagiotakopoulos L, et al. Hepatitis C Virus Testing During Pregnancy After Universal Screening Recommendations. Obstet Gynecol. 2022 Jul 1;140(1):99-101.

25. Kushner T, Park C, Masand D, Wagner B, Grace M, Rosenbluth E, et al. Hepatitis C Seroprevalence Among Consecutive Labor and Delivery Admissions in Two New York City Hospitals. Open forum infect. 2020 Nov;7(11):ofaa514.

26. Lopata SM, McNeer E, Dudley JA, Wester C, Cooper WO, Carlucci JG, et al. Hepatitis C Testing Among Perinatally Exposed Infants. Pediatrics. [Research Support, N.I.H., Extramural]. 2020 03;145(3):03.

27. Mast EE, Hwang LY, Seto DS, Nolte FS, Nainan OV, Wurtzel H, et al. Risk factors for perinatal transmission of hepatitis C virus (HCV) and the natural history of HCV infection acquired in infancy. Journal of Infectious Diseases. [Research Support, Non-U.S. Gov't]. 2005 Dec 01;192(11):1880-9.

28. Pfeiffer M, O'Connor A, Zimmerman C, Thakarar K, Ahrens K. Hepatitis C Virus Cascade of Care Among Perinatal Patients in Maine Diagnosed With Opioid Use Disorder, 2015-2020. J Addict Med. 2022 Oct 27;27:27.

29. Prasad M, Saade GR, Sandoval G, Hughes BL, Reddy UM, Mele L, et al. Hepatitis C Virus Antibody Screening in a Cohort of Pregnant Women: Identifying Seroprevalence and Risk Factors. Obstet Gynecol. [Research Support, N.I.H., Extramural]. 2020 04;135(4):778-88.

30. Rossi RM, Wolfe C, Brokamp R, McAllister JM, Wexelblatt S, Warshak CR, et al. Reported Prevalence of Maternal Hepatitis C Virus Infection in the United States. Obstet Gynecol. 2020 Feb;135(2):387-95.

31. Smith C, Silveira L, Crotteau M, Garth K, Canniff J, Fetters KB, et al. Congenital Co-infections Among HIV-Exposed Infants Born to Mothers on Antiretroviral Treatment in the United States. Front. 2022;10:894627.

32. Watts T, Stockman L, Martin J, Guilfoyle S, Vergeront JM. Increased Risk for Mother-to-Infant Transmission of Hepatitis C Virus Among Medicaid Recipients - Wisconsin, 2011-2015. MMWR -Morbidity & Mortality Weekly Report. 2017 Oct 27;66(42):1136-9.

33. Watts T, Stockman L, Martin J, Guilfoyle SM, Vergeront JM, Zahner S. Estimates of Prenatal HIV, Hepatitis B Virus, and Hepatitis C Virus Testing Among Pregnant People Enrolled in Wisconsin Medicaid, 2011-2015. Maternal & Child Health Journal. 2020 Feb;24(2):177-85.

34. Abughali N, Maxwell JR, Kamath AS, Nwankwo U, Mhanna MJ. Interventions using electronic medical records improve follow up of infants born to hepatitis C virus infected mothers. Pediatric Infectious Disease Journal. 2014 Apr;33(4):376-80.

35. Bal A, Petrova A. Single Clinical Practice's Report of Testing Initiation, Antibody Clearance, and Transmission of Hepatitis C Virus (HCV) in Infants of Chronically HCV-Infected Mothers. Open Forum Infectious Diseases. 2016 Jan;3(1):ofw021.

36. Bell R, Wolfe I, Cox D, Thakarar K, Lucas L, Craig A. Hepatitis C Screening in Mothers and Infants Exposed to Opioids. Hospital Pediatrics. 2019 08;9(8):639-42.

37. Berkley EM, Leslie KK, Arora S, Qualls C, Dunkelberg JC. Chronic hepatitis C in pregnancy. Obstetrics & Gynecology. 2008 Aug;112(2 Pt 1):304-10.

38. Bhardwaj AM, Mhanna MJ, Abughali NF. Maternal risk factors associated with inadequate testing and loss to follow-up in infants with perinatal hepatitis C virus exposure. Journal of Neonatal-Perinatal Medicine. 2021;14(1):123-9.

39. Chappell CA, Hillier SL, Crowe D, Meyn LA, Bogen DL, Krans EE. Hepatitis C Virus Screening Among Children Exposed During Pregnancy. Pediatrics. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2018 06;141(6):06.

40. Epstein RL, Sabharwal V, Wachman EM, Saia KA, Vellozzi C, Hariri S, et al. Perinatal Transmission of Hepatitis C Virus: Defining the Cascade of Care. Journal of Pediatrics. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, P.H.S.]. 2018 12;203:34-40.e1.

41. Gowda C, Smith S, Crim L, Moyer K, Sanchez PJ, Honegger JR. Nucleic Acid Testing for Diagnosis of Perinatally-Acquired Hepatitis C Virus Infection in Early Infancy. Clinical Infectious Diseases. 2020 Jul 08;08:08.

42. Hojat LS, Greco PJ, Bhardwaj A, Bar-Shain D, Abughali N. Using Preventive Health Alerts in the Electronic Health Record Improves Hepatitis C Virus Testing Among Infants Perinatally Exposed to Hepatitis C. Pediatric Infectious Disease Journal. 2020 10;39(10):920-4.

43. Kuncio DE, Newbern EC, Johnson CC, Viner KM. Failure to Test and Identify Perinatally Infected Children Born to Hepatitis C Virus-Infected Women. Clinical Infectious Diseases. [Research Support, U.S. Gov't, P.H.S.]. 2016 Apr 15;62(8):980-5.

44. Lazenby GB, Orr C, Guille C, Meissner EG. Increasing Prevalence of Chronic Hepatitis C Virus Infection in a Southern Academic Obstetrical Clinic. Southern Medical Journal. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2019 06;112(6):325-30.

45. Towers CV, Fortner KB. Infant follow-up postdelivery from a hepatitis C viral load positive mother. Journal of Maternal-Fetal & Neonatal Medicine. 2019 Oct;32(19):3303-5.

46. Jonas MM, Squires RH, Rhee SM, Lin CW, Bessho K, Feiterna-Sperling C, et al. Pharmacokinetics, Safety, and Efficacy of Glecaprevir/Pibrentasvir in Adolescents With Chronic Hepatitis C Virus: Part 1 of the DORA Study. Hepatology. 2020 Feb;71(2):456-62.

47. Jonas MM, Rhee S, Kelly DA, Del Valle-Segarra A, Feiterna-Sperling C, Gilmour S, et al. Pharmacokinetics, Safety, and Efficacy of Glecaprevir/Pibrentasvir in Children With Chronic HCV: Part 2 of the DORA Study. Hepatology. 2021 Jul;74(1):19-27.

48. Schwarz KB, Rosenthal P, Murray KF, Honegger JR, Hardikar W, Hague R, et al. Ledipasvir-Sofosbuvir for 12 Weeks in Children 3 to <6 Years Old With Chronic Hepatitis C. Hepatology. 2020 Feb;71(2):422-30.

49. Rosenthal P, Schwarz KB, Gonzalez-Peralta RP, Lin CH, Kelly DA, Nightingale S, et al. Sofosbuvir and Ribavirin Therapy for Children Aged 3 to <12 Years With Hepatitis C Virus Genotype 2 or 3 Infection. Hepatology. 2020 Jan;71(1):31-43.

50. Murray KF, Balistreri WF, Bansal S, Whitworth S, Evans HM, Gonzalez-Peralta RP, et al. Safety and Efficacy of Ledipasvir-Sofosbuvir With or Without Ribavirin for Chronic Hepatitis C in Children Ages 6-11. Hepatology. 2018 Dec;68(6):2158-66.

51. Balistreri WF, Murray KF, Rosenthal P, Bansal S, Lin CH, Kersey K, et al. The safety and effectiveness of ledipasvir-sofosbuvir in adolescents 12-17 years old with hepatitis C virus genotype 1 infection. Hepatology. 2017 Aug;66(2):371-8.

52. Wirth S, Rosenthal P, Gonzalez-Peralta RP, Jonas MM, Balistreri WF, Lin CH, et al. Sofosbuvir and ribavirin in adolescents 12-17 years old with hepatitis C virus genotype 2 or 3 infection. Hepatology. 2017 Oct;66(4):1102-10.

53. Ades AE, Gordon F, Scott K, Collins IJ, Thorne C, Pembrey L, et al. Spontaneous Clearance Of Vertically Acquired Hepatitis C Infection: Implications For Testing And Treatment. Clin Infect Dis. 2022 Apr 09;09:09.

54. Biggar RJ, Ortiz-Conde BA, Bagni RK, Bakaki PM, Wang CD, Engels EA, et al. Hepatitis C virus genotype 4 in Ugandan children and their mothers. Emerg Infect Dis. [Research Support, N.I.H., Extramural]. 2006 Sep;12(9):1440-3.

55. Ceci O, Margiotta M, Marello F, Francavilla R, Lerardi E, Loizzi P, et al. High rate of spontaneous viral clearance in a cohort of vertically infected hepatitis C virus infants: what lies behind? Journal of Hepatology. [Letter]. 2001 Nov;35(5):687-8.

56. Ceci O, Margiotta M, Marello F, Francavilla R, Loizzi P, Francavilla A, et al. Vertical transmission of hepatitis C virus in a cohort of 2,447 HIV-seronegative pregnant women: a 24-month prospective study. J Pediatr Gastroenterol Nutr. 2001 Nov;33(5):570-5.

57. Checa Cabot CA, Stoszek SK, Quarleri J, Losso MH, Ivalo S, Peixoto MF, et al. Mother-to-Child Transmission of Hepatitis C Virus (HCV) Among HIV/HCV-Coinfected Women. J Pediatric Infect Dis Soc. 2013 Jun;2(2):126-35.

58. Di Domenico C, Di Giacomo C, Marinucci G, Di Paolo A. Vertical transmission of HCV infection: prospective study in infants born to HIV-1 seronegative women. Ig Sanita Pubbl. [Comparative Study Evaluation Study]. 2006 Mar-Apr;62(2):129-42.

59. England K, Pembrey L, Tovo PA, Newell ML, European Paediatric HCVN. Excluding hepatitis C virus (HCV) infection by serology in young infants of HCV-infected mothers. Acta Paediatr. [Research Support, Non-U.S. Gov't]. 2005 Apr;94(4):444-50.

60. Ferrero S, Lungaro P, Bruzzone BM, Gotta C, Bentivoglio G, Ragni N. Prospective study of mother-to-infant transmission of hepatitis C virus: a 10-year survey (1990-2000). Acta Obstet Gynecol Scand. 2003 Mar;82(3):229-34.

61. Fukuoka T, Bessho K, Hosono S, Abukawa D, Mizuochi T, Ito K, et al. The impact of treatment on the psychological burden of mothers of children with chronic hepatitis C virus infection: a multicenter, questionnaire survey. Sci Rep. 2022 Dec 21;12(1):22116.

62. Gander S, Morris A, Materniak S. An Evaluation of Hepatitis C Screening in Infants and Children Born to Seropositive Mothers in Saint John, New Brunswick. Cureus. 2021 Aug;13(8):e17377.

63. Greiner MV, Beal SJ, Nause K, Staat MA, Dexheimer JW, Scribano PV. Laboratory Screening for Children Entering Foster Care. Pediatrics. 2017;140(6):1-9.

64. Healy CM, Cafferkey MT, Conroy A, Dooley S, Hall WW, Beckett M, et al. Outcome of infants born to hepatitis C infected women. Ir J Med Sci. 2001 Apr-Jun;170(2):103-6; discussion 92-3.

65. Jhaveri R, Hashem M, El-Kamary SS, Saleh DA, Sharaf SA, El-Mougy F, et al. Hepatitis C Virus (HCV) Vertical Transmission in 12-Month-Old Infants Born to HCV-Infected Women and Assessment of Maternal Risk Factors. Open forum infect. 2015 Apr;2(2):ofv089.

66. Kushner T, Djerboua M, Biondi MJ, Feld JJ, Terrault N, Flemming JA. Influence of hepatitis C viral parameters on pregnancy complications and risk of mother-to-child transmission. Journal of Hepatology. [Research Support, Non-U.S. Gov't]. 2022 11;77(5):1256-64.

67. Marjani A, Garshasbi S, Khanaliha K, Kahyesh-Esfandiary R, Dehghani-Dehej F, Babaei R, et al. Screening of Occult Hepatitis B and C Virus Infection in Working Children, Tehran, Iran. Archives of Pediatric Infectious Diseases. 2022 October;10(4) (no pagination).

68. Meskina ER, Galkina LA, Tselipanova EE, Odinaeva ND. Hepatitis C virus care cascade for children in Moscow Region. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii. [Article]. 2022;99(5):525-39.

69. Mok J, Pembrey L, Tovo PA, Newell ML, European Paediatric Hepatitis CVN. When does mother to child transmission of hepatitis C virus occur? Arch Dis Child Fetal Neonatal Ed. 2005 Mar;90(2):F156-60.

70. Mostafa A, Ebeid FSE, Khaled B, Ahmed RHM, El-Sayed MH. Micro-elimination of hepatitis C through testing of Egyptian pregnant women presenting at delivery: implications for screening policies. Trop Med Int Health. 2020 07;25(7):850-60.

71. Peixoto MF, Mattos AA, Remiao JO, Alexandre CO, Lemos SK, Azevedo AM. Vertical transmission of hepatitis C virus in a hospital in southern Brazil. Arq Gastroenterol. 2004 Apr-Jun;41(2):84-7.

72. Pinto RB, Ramos ARL, Padua LT, Swayze EJ, Cambou MC, Fiorini M, et al. Prospective cohort study of children exposed to hepatitis C virus through a pregnancy screening program. Int J Infect Dis. 2021 Sep;110:62-8.

73. Polywka S, Pembrey L, Tovo PA, Newell ML. Accuracy of HCV-RNA PCR tests for diagnosis or exclusion of vertically acquired HCV infection. J Med Virol. [Multicenter Study Research Support, Non-U.S. Gov't]. 2006 Feb;78(2):305-10.

74. Reid S, Day CA, Bowen DG, Minnis J, Ludlow J, Jacobs S, et al. Vertical transmission of hepatitis C: Testing and health-care engagement. J Paediatr Child Health. 2018 Jun;54(6):647-52.

75. Shebl FM, El-Kamary SS, Saleh DA, Abdel-Hamid M, Mikhail N, Allam A, et al. Prospective cohort study of mother-to-infant infection and clearance of hepatitis C in rural Egyptian villages. J Med Virol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. 2009 Jun;81(6):1024-31.

76. Stinco M, Bartolini E, Veronese P, Rubino C, Moriondo M, Ricci S, et al. Epidemiology and Natural History of Childhood-Acquired Chronic Hepatitis C: A Single-Center Long-Term Prospective Study. J Pediatr Gastroenterol Nutr. 2022 08 01;75(2):e2-e7.

77. Ziyaeyan M, Jamalidoust M, Moeini M. Evaluation of hepatitis C virus infection in antibody positive orphan newborns. Jundishapur Journal of Microbiology. 2013;6(1):72-5.

78. Husereau D, Drummond M, Augustovski F, de Bekker-Grob E, Briggs AH, Carswell C, et al. Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: updated reporting guidance for health economic evaluations. BMJ. 2022 Jan 11;376:e067975.

79. Hall EW, Panagiotakopoulos L, Wester C, Nelson N, Sandul AL. Cost-effectiveness of Strategies to Identify Children with Perinatally Acquired Hepatitis C Infection. J Pediatr. 2023 Apr 4:113409.